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Abstract

It is important to measure scars in forensic and clinical medicine. In practice, scars are mostly manually measured, and the results are
diverse and influenced by various subjective factors. With the development of digital image technology and artificial intelligence, noncontact
and automatic photogrammetry has been gradually used in some practical applications. In this article, we propose an automatic method
for measuring the length of linear scars based on multiview stereo and deep learning, which combines the 3D reconstruction algorithm of
structure from motion and the image segmentation algorithm based on a convolutional neural network. With a few pictures taken by a smart
phone, automatic segmentation and measurement of scars can be realized. The reliability of the measurement was first demonstrated through
simulation experiments on five artificial scars, giving errors of length <5%. Then, experiment results on 30 clinical scar samples showed that
our measurements were in high agreement with manual measurements, with an average error of 3.69%. Our study demonstrates that the
application of photogrammetry in scar measurement is effective and that the deep learning technique can realize the automation of scar
measurement with high accuracy.
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Introduction

Skin scar means that skin tissue is completely damaged and
then fibrillar connective tissue is formed during healing pro-
cess [1]. In forensic science, it is generally acknowledged that
injury time and vulnerant can be inferred according to the
linear scars’ colour, length, and shrinkage. It has been found
that the scar caused by different wound tools has differ-
ent morphological characteristics [2]. For instance, the scar’s
shrinking rate caused by blunt instrument injury is higher
than that caused by sharp instrument injury [3]. Therefore,
scar measurement is often required in forensics to assist crime
investigation and to protect the legitimate rights and interests
of victims [4, 5]. Areal or volumetric measurements can also
be used to assess the treatment outcomes in clinical medicine
[5–7].

Traditional scar measurements with ruler, palm, film tracing
method, etc., still continue to be commonly used methods,
which take longer time and need contact of bodies during
examinations [8]. Moreover, when meeting uneven parts, such
as ear and nose, accurate results will be difficult to obtain by
these measurements. In addition, it has been proved that scar
normally stabilizes in 3 months, but its consistent changing
cannot be excluded, such as scar atrophy. Therefore, the
evidence from traditional methods has poor fidelity and stora-
bility [2]. The new measurement method, such as structured

light 3D scanning technology, has been developed and can
extract the isolated information of skin scars, with accurate
and reliable results [9]. However, the method has some dis-
advantages. For instance, the instrument is not portable, has
motion artefact, and the scanning light is harsh. Therefore, it
is necessary to find a noncontact, portable, quick imaging, and
highly accurate method for scar measurement.

Photogrammetry is the science and technology of obtaining
reliable information about physical objects and the environ-
ment through the process of recording, measuring, and inter-
preting photographic images and patterns of electromagnetic
radiant imagery and other phenomena [10]. Photogramme-
try is often used to acquire 3D data and measure nonrigid
objects. It involves the process of taking multiple perspective
images of the object to be measured and then reconstructing
a 3D model. In forensics, photogrammetry can be applied
in measuring crime scene, height of human, specific organ
tissues, skin wounds, and other injuries [11–16]. The accuracy
of photogrammetry depends on the clarity and quantity of
images acquired, the distortion of the camera, and size of the
subject within the image.

In recent years, artificial intelligence (AI) has developed
rapidly and is widely used in various fields. The applica-
tion of deep learning in the field of computer vision has
gradually matured [17, 18]. Especially, convolutional neural
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networks (CNNs) have revolutionized tasks such as image
recognition, classification, and semantic segmentation [19].
At the same time, CNNs has achieved great success in the
field of segmentation of medical images (MRI, CT, X-ray, etc.)
and auxiliary diagnosis due to its excellent feature expression
capabilities, and with the segmentation of medical images,
clinicians can quantitatively analyse the pathological area
[20]. The present research attempts to use AI and photogram-
metry to achieve automatic segmentation and measurement of
linear scars.

In our study, scars are adhered to the surfaces of human
skin, which are not simple planes but curved surfaces in
3D space. Therefore, the measurement scheme based on 2D
vision is not accurate. In order to use the existing technology
to measure the length of linear scars and to solve practical
problems in the forensic medicine, we propose an automatic
segmentation and measurement method for linear scars based
on multiview 3D reconstruction and CNNs. First, 3D recon-
struction technology based on multiview images is applied to
restore the 3D information of the scar. Then, a 2D CNN is
used to automatically segment the scar in multiview images.
Finally, the results of these two techniques are combined to
generate point cloud data, and the length of linear scars is
calculated based on point cloud processing. As far as we know,
this is the first attempt for noncontact, automatic, and 3D
measurement of scars.

The rest of the paper is organized as follows: in the
Related works section, we introduce some previous work
on photogrammetry, scar measurement, and wound mea-
surement. In the Materials and methods section, the overall
measurement framework, each step of the proposed method,
evaluation metrics, experimental data, and implementation
details will be described and explained in detail. Results of
image segmentation and length measurement are given in the
Results section. In the end, we give some discussions and
conclude our entire work.

Related works

There is extensive application of photogrammetry in the
field of forensic medicine. Zou et al. [12] used traditional
measurement and single-camera photogrammetry to measure
19 skulls, respectively, and analysed the differences between
the two measurement methods and the intragroup differences
between groups of different focal lengths with the same photo-
graphic equipment. Flies et al. [13] documented 33 cadaveric
skin lesions using photographs and video recordings, and
lesion analysis were performed by manual and automatic
point measurements, respectively. They concluded that the
differences between the manual point and automatic point
measurements were very small. Donato et al. [14] generated
3D volumes of skulls to compare the photogrammetry versus
the CT scan. Their experiment results indicated that the
measurements taken on the photogrammetry-based skull tend
to slightly overestimate compared with those taken on the
CT-based skull. Koller et al. [15] used 3D photogrammetry
to overcome the shortcomings of spatial information loss of
2D images and achieved accurate measurement of wound size.
Lee et al. [16] proposed a photogrammetry-based method
for criminal height measurement using surveillance camera
images, and it was found that the motion of a person can lead
to measurement errors.

However, at present, there are relatively few studies on the
measurement of scars. Gao [8] proposed to place thin copper
wire close to the body surface and mark the length. Then, the
thin copper wire is straightened and measured with a ruler
which represents the scar length. Min and Zhang [21] directly
used a 3D scanner to scan the scar area to obtain point cloud
data. Then, they extracted the trend line of the scar based on
the point cloud data. Finally, the length of the scar is solved
by calculating the trend line. Fu et al. [9] proposed a method
to measure the length of linear scars, based on structured
light technology, by which point cloud data were obtained
and processed. Then, they manually extracted the scar edge
and calculated the scar length [9]. Taylor et al. [7] used a
3D laser imaging device and interactive image processing to
measure the volume of keloid scars. These methods require
special imaging devices and/or involve manual intervention.

Similar research has been carried out for wound measure-
ment. Treuillet et al. [22] proposed a 3D assessment tool
for skin wounds. They restored a 3D model of the wound
by taking two images from different angles and calculated
wound volume based on triangulation. Pavlovčič and JezeršEk
[23] proposed to use a handheld measurement system based
on triangulation and structured light technology to measure
wound size. Filko et al. [24] explored 3D detection, segmen-
tation, reconstruction, and measurement of wounds based on
the images taken by an RGB-D camera. Some of these meth-
ods achieved noncontact, automatic, and 3D measurement
of wounds. However, the image features of scars are very
different from those of wounds, and they are more difficult to
identify from normal skin. Therefore, more powerful image
processing methods need to be applied.

Materials and methods

Method overview

The overall framework of automatic measurement is shown
in Figure 1. Multiview images are taken, with a scale placed
beside the scar being measured. In this study, we used a
sticker scale attached to the normal skin near the scar, with
a round shape whose radius is 0.5 cm and whose colour is
blue or green. The multiview images are, respectively, passed
through the 3D reconstruction module and the 2D image
segmentation module. The segmentation mesh of the 3D
model can be obtained by remapping the 2D segmentation
maps to the 3D model. The point clouds of the scar and scale
can then be extracted and measured, respectively, by point
cloud processing. Finally, the true scar length is obtained based
on the proportion of sizes between the scar and the scale.

3D reconstruction

We use the structure from motion (SfM) algorithm [25] to
achieve 3D scene reconstruction from multiview-images taken
by a digital camera or smart phone. The first step is feature
extraction. Feature points with scale, rotation, and illumi-
nation invariance in each image are extracted. The second
step is feature matching. Feature points are matched based on
the Euclidean distance to generate image matching pairs. The
third step is sparse reconstruction. Sparse point cloud in the
scene is reconstructed. The fourth step is dense reconstruction.
Dense point cloud in the scene is reconstructed. The final step
is mesh reconstruction and texture mapping. Then, a complete
3D model is reconstructed based on the multiview method.
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Figure 1. Flowchart of the automatic scar measurement method.

Image segmentation

The deep network we use has an encoder–decoder structure,
which is commonly used in the field of image segmentation.
In order to get more representative feature maps, we employ
a pretrained ResNet34 [26] as the encoder. ResNet, the deep
residual network, is a milestone in deep learning-based image
processing. The residue structure can effectively eliminate the
degeneration problem caused by the increase in the number
of convolutional layers and can make the network easier
to train. In addition, the pretrained models of these classic
networks based on the large-scale ImageNet database can be
used to promote other tasks [26]. As shown in Figure 2, the
encoder consists of four feature extraction layers of ResNet34
[26], and the decoder consists of four consecutive convolu-
tional layers and upsampling operations. The skip connection
between the encoder and the decoder is used to combine
the feature maps in the deep layers of decoder representing
semantic information and the ones in the shallow layers of
encoder containing detailed information. We removed the
maxpooling layer in the Input stem block to improve the
segmentation of slender objects.

In order to improve the performance of our model, we use
a joint loss function in model training, including Dice loss,
LDice, and binary crossentropy (BCE), loss LBCE, defined as
follows:

LDice = 1 − 2 × ∑N
i pigi + ε

∑N
i pi

2 + ∑N
i gi

2 + ε
, (1)

LBCE = − 1
N

N∑

i

gi log
(
pi

) + (
1 − gi

)
log

(
1 − pi

)
, (2)

where pi ∈ [0, 1] denotes the predicted probability for the scar
or scale region, and gi ∈ {0, 1} denotes the ground truth label

for scar or scale region.

Ltotal = LDice + LBCE. (3)

Texture remapping and point cloud segmentation

The 3D reconstruction recovers the scene information, and
the 2D image segmentation obtains the position information
of the scar and the scale. Based on the 2D to 3D mapping
obtained in the reconstruction step, we can map the 2D
segmentation map to 3D with the same correspondence. Then,
the 3D segmentation mesh can be converted into point clouds
through mesh sampling operation. Colour thresholding is
used to extract the point clouds corresponding to scar and
scale from the black background.

Length measurement

As the actual radius of the scale is 0.5 cm, as long as the
pixel-space radius of the round scale, R, and the linear scar
length, Lpc, are solved, the actual length of the linear scar can
be calculated as

Lscar = Lpc

2R
(cm) . (4)

The median of distance values calculated between the centre
and all edge points of the scale are taken as the radius R. Since
sampling of the point cloud is random, we take the average of
multiple measurements.

For calculating the length of a linear scar, we propose a
point cloud skeleton extraction algorithm based on neigh-
bourhood mean. For the point cloud corresponding to the
linear scar, after removal of outliers, we define its main
direction according to the largest span in the X, Y, or Z
directions and reset this direction as the X axis, without loss of
generality. We set the resolution of the skeleton as 1 point/mm
in the main direction. Therefore, the total range of points in
the main direction

[
0, Xrange

]
is divided into nonoverlapping

Figure 2. Image segmentation framework based on convolutional neural network; the red area in the segmentation map represents the linear scar, and
the green area represents the scale.
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windows
{
wm, m = 1, · · · , M

}
with size R/10, where M =[

Xrange/R × 10
]
. Then, the mean coordinate of points falling

in to the same window is calculated as the position of a
skeleton point.

Pskl
m = mean (Pi) , xi ∈ wm

Pi = [xi, yi, zi]
. (5)

Evaluation metrics

In order to objectively evaluate the segmentation performance
of our model, three common evaluation metrics were used,
including Dice similarity coefficient (DSC), sensitivity (Sen),
and specificity (Spe), calculated as follows:

DSC = 2 × TP
2 × TP + FP + FN

, (6)

Sen = TP
TP + FN

, (7)

Spe = TN
TN + FP

, (8)

where TP, TN, FP and FN represent the number of true
positive, true negative, false positive, and false negative pre-
dictions, respectively.

To evaluate the accuracy of scar length measurement, rela-
tive error (RE) was used, which was calculated as follows:

RE = |Xa − Xr|
Xr

× 100%, (9)

where Xa represents automatic measurement and Xr repre-
sents reference value.

Materials

To verify the feasibility of measurement in the reconstructed
3D model, some simulation experiments were performed. In
the experiments, we drew five “artificial scars” with different
curvatures and lengths using the AutoCAD software and
printed the image at 1:1 ratio. The paper with the artificial scar
was attached to a curved surface. Four multiview images were
taken for each artificial scar. The true length of these scars
was calculated directly in the AutoCAD software. In order to
independently verify the accuracy in length measurement, the
scar and scale were manually annotated.

Our clinical dataset was collected from the Academy of
Forensic Science, Ministry of Justice, P. R. China with written
approval for usage in this study. Each scar sample had the

result of manual measurement made by a forensic expert.
All the scar images were taken from multiple angles with
a smart phone (HUAWEI Nova 7; HuaweiTech, Shenzhen,
China) with a single camera. The subject was kept still and the
smart phone was moved around at the time of data collection.
It was also made sure that the entire scar appeared in the field
of view and was about in the centre of the image. A total
of 778 images were collected from 130 scar samples. Each
sample contained 4–10 multi-view images. As required by
CNN model developing, we divided the dataset as follows: 80
scars containing 485 pictures for training, 20 scars containing
124 pictures for segmentation model validation, and 30 scars
contain 169 pictures for testing.

Implementation details

The experiments were carried out on a PC with Intel
®

Core™
i7-9700 CPU @ 3.00GHz, 16GB RAM, and NVIDIA GeForce
RTX 2060 SUPER GPU with 8G memory. The 3D recon-
struction algorithm was implemented based on the C++ open
source library of Colmap [27] and OpenMVS [28]. The image
segmentation algorithm was implemented on the Pytorch deep
learning platform, with GPU acceleration.

In order to balance between the accuracy and efficiency of
3D reconstruction, the image was downsampled by a rate of
4 before the mesh was refined. The minimum resolution for
image after rescaling is 960. The number of views used for
depth map estimation is set to 3. The sampling density per
square unit of mesh is 1 000.

For image segmentation, the input image of the seg-
mentation network was downsampled to 512 × 512. Data
augmentation was used in the training process, such as
horizontal flipping, vertical flipping, and rotations from −30◦
to 30◦. The number of epochs for network training was set to
200 and the batch size was set to 2. The “poly” learning rate
policy was used, where lr = lrbase × (

1 − iter/total_iter
)power,

the basic learning rate lrbase was set to 0.01, and power was set
to 0.9. The optimizer was stochastic gradient descent in which
momentum and weight decay were set to 0.9 and 0.0001,
respectively.

Results

Image segmentation

The results of 2D scar segmentation are shown in Table 1.
We compared our method with other excellent CNN based
methods, including U-Net [29], attention U-Net [30], fully
convolutional networks [31], DeepLabV3 [32], and CE-Net
[33]. The DSC of our method reaches 0.8660. This proves the
effectiveness of our model. Some visualization of segmenta-
tion results is shown in Figure 3. Note that small discrepancies

Table 1. Results of comparative experiments.

Method DSC Sen Spe

U-Net [29] 0.8002 0.8619 0.9990
Attention U-Net [30] 0.7957 0.8486 0.9991
FCN_Res50 [31] 0.8303 0.8725 0.9990
DeepLabV3_ Res50 [32] 0.8389 0.9018 0.9990
CE-Net [33] 0.8463 0.8900 0.9991
The present study 0.8660 0.9029 0.9993

DSC, Dice similarity coefficient; Sen, sensitivity; Spe, specificity.
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in contours may not affect the accuracy of the following length
measurement.

Simulation experiment

One example of simulation experiment is shown in Figure 4,
and the results of measurement are shown in Table 2. We
present the artificial scar, the multiview images used for
reconstruction, the reconstructed 3D model, the point cloud

of the scar and scale, and the skeleton of the scar and the edge
of the scale, respectively. It can be seen from the results that
compared with the true length, our measurements give errors
<5%.

Clinical experiment
We applied our method to 30 sets of clinical data. Like the sim-
ulation experiment, we gave some visualized results, including

Figure 3. Image segmentation results; (A) original image, (B) ground truth, and (C) the present study (red contours) compared with ground truth (green
contours).

Figure 4. Simulation experiments; (A) artificial scar, (B) multiview images, (C) reconstructed model, (D) point clouds of scar and scale, and (E) skeleton of
scar and edge of scale.

Table 2. Results of the simulation experiments.

No. Number of views CAD measurement (cm) Our measurement (cm) RE (%)

Scar 1 4 12.68 12.35 2.60
Scar 2 4 6.80 6.58 3.23
Scar 3 4 1.41 1.36 3.54
Scar 4 4 10.42 10.03 4.70
Scar 5 4 20.01 19.53 2.39

RE, relative error; CAD: computer aided design.
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multiview images used for reconstruction, the reconstructed
3D model, the segmentation maps of the multiview images,
the segmentation mesh of the 3D model, the point cloud
of the scar and the scale, and the skeleton of the scar and

the edge of the scale. The results show scars of different
lengths in different areas of the human body, including thighs,
calves, abdomen, shoulders, wrists, elbows, ankles, knees, etc.
(Figure 5).

Figure 5. Clinical experiments; (A) multiview clinical images, (B) reconstructed models, (C) 2D segmentation maps, (D) segmentation results remapped
to 3D model, (E) point clouds of scars and scales, and (F) skeletons of scars and edges of scales.
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The measurement results of 30 sets of clinical data are listed
in Table 3. We compared our results with manual measure-
ments. The average error between our result and manual result
is 3.69%. The maximum error value is 7.22%, and the mini-
mum error value is 0.11%. The correlation analysis diagram
and the Bland–Altman diagram are shown in Figures 6 and 7,
respectively, which indicate our results have strong correlation
with manual results.

Table 3. The results of clinical experiments.

No. Time cost (s) Number of
views

Manual
(cm)

Ours (cm) RE (%)

Reconstruction Measurement

Scar 1 154.73 24.67 6 22.1 21.53 2.57
Scar 2 95.21 24.05 5 9.3 9.96 7.09
Scar 3 119.91 24.01 7 7.6 7.53 0.92
Scar 4 127.72 25.98 6 9.8 9.31 5.00
Scar 5 105.64 32.42 5 11.9 11.80 0.84
Scar 6 100.80 7.46 4 12.6 13.51 7.22
Scar 7 112.53 35.98 5 22.3 21.45 3.81
Scar 8 104.45 23.70 5 38.5 38.64 0.36
Scar 9 145.36 26.38 5 2.9 3.04 4.82
Scar 10 125.76 26.18 5 10.5 10.87 3.52
Scar 11 89.87 24.31 6 14.5 14.13 2.55
Scar 12 88.52 25.50 5 18.8 19.13 1.75
Scar 13 126.21 24.74 6 24.5 25.14 2.61
Scar 14 109.94 25.84 5 3.6 3.37 6.38
Scar 15 89.23 45.99 4 3.0 2.80 6.66
Scar 16 94.25 30.09 5 8.2 7.75 5.48
Scar 17 101.95 27.13 5 11.4 11.29 0.96
Scar 18 121.78 26.47 6 12.0 12.14 1.16
Scar 19 134.33 25.79 6 13.2 14.12 6.96
Scar 20 86.10 59.62 4 15.3 15.26 0.26
Scar 21 106.95 34.18 7 6.3 6.43 2.06
Scar 22 105.34 26.17 7 7.0 6.51 7.00
Scar 23 102.52 26.90 6 8.7 9.07 4.25
Scar 24 92.23 27.13 5 8.0 8.46 5.75
Scar 25 87.57 26.44 5 12.0 12.63 5.25
Scar 26 108.48 30.41 5 17.6 17.62 0.11
Scar 27 151.86 24.11 9 19.0 19.94 4.95
Scar 28 95.04 27.28 5 6.5 6.24 4.00
Scar 29 126.80 24.48 7 7.2 7.11 1.25
Scar 30 142.03 31.14 8 8.6 9.05 5.23
Mean ± Std 111.77 ± 19.95 28.15 ± 8.38 / / / 3.69 ± 2.35

RE, relative error; Std, standard deviation.

Figure 6. Correlation analysis diagram.

Discussion

We propose an automatic, noncontact, and objective method
for scar length measurements in 3D space. We combine the
3D reconstruction based on the SfM algorithm with the
image segmentation algorithm based on deep learning to
complete the segmentation, which transforms the problem of
complex 3D model segmentation into the easy problem of
2D image segmentation. It is demonstrated that, based on

Figure 7. Bland–Altman diagram; SD: standard deviation.
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multiview images captured by an ordinary smart phone, the
reconstructed 3D model is visually realistic, clearly reflecting
the shape, location, and curvature of the scar. The powerful
data-driven deep learning method is adopted to automati-
cally delineate the scar area. The DSC of our segmentation
model reached 0.866, and it outperforms some state-of-the-
art deep neural networks. Then, we proposed a linear scar
measurement method on point cloud data based on skeleton
extraction. Simulation experiments show that the 3D mea-
surement based on manual segmentation gives errors <5%
compared with ground truth. Combining automatic segmen-
tation and point cloud measurement, a fully automatic 3D scar
length measurement framework is designed. For the 30 sets of
clinical data, the mean relative difference between our calcu-
lated results and manual measurement results is 3.69%. The
correlation between manual and automatic measurements is
also high.

Traditional manual measurement can be affected by
subjective factors and requires touching of the skin. The
methods based on 2D images can only measure the projection
of scars on a plane, which greatly reduces the accuracy,
especially when the scars lie on a surface with large curvatures.
Most of the previous research on linear scar measurement
tried to deal with the above problems, but they still involved
more or less manual interventions. Gao [8] used thin copper
wire instead of ruler to measure scars so that the scar shape
can be better fitted. However, this method requires contact,
and subjective factors still cannot be avoided during manual
fitting, such as the judgement of scar curvature and thickness.
Min and Zhang [21] used a 3D scanner to collect point
cloud data of the scar. Although they used an automatic
algorithm to calculate the scar length, they ignored the error
and trouble caused by manual extraction of the scar area.
Their method was validated on only three sets of data. Fu et al.
[9] acquired scar data using structured light, which required
expensive image equipment. Moreover, they used a type of
general-purpose software to interactively extract the scar
area, and the segmentation subjected to the interference of
backgrounds and noise. Taylor et al. [7] used a special device
with laser scanning to capture the 3D scar data, where strict
imaging setting, including shooting distance and lighting
condition, is required. Multiple steps of interactive image
processing are needed to obtain the measurement.

By contrast, the requirement of data acquisition in our
method is low. Any digital camera or smart phone can be
used. There are no strict requirements of shooting angle and
distance, and the imaging operation is easy and noncontact.
The measurement is fully automatic and thus avoids errors
caused by subjective factors.

As can be seen in Figure 5, we have attached two scales
near the scar to be measured. The scale colour is chosen to
be blue or green, making them different from the colour of
skin and scar so that they are easy to segment. One is a square
with a side length of 1 cm and the other is a circle with a
radius of 0.5 cm. In our study, we choose the circular scale
because multiple radii can be solved and the average value
can be calculated to reduce the error. The deformation of the
scale can cause measurement errors. In later practice, a rigid
scale such as a coin can be used.

There is still some room for improvement in our method.
First, the efficiency of 3D reconstruction needs to be enhanced
to facilitate clinical usage. As can be seen from the time cost in
Table 3, the most time-consuming part of the whole process

is 3D reconstruction. The time cost depends not only on the
number of pictures but also on the image quality, resolution,
and reconstruction parameters. To cope with the problem,
state-of-the-art deep learning-based methods, usually with a
short inference time, can be applied for feature point matching
and dense reconstruction. Secondly, the automatic segmenta-
tion method can be further investigated. Modules that help
better extract the colour, texture, and context information
can be integrated to the network. On the other hand, instead
of segmentation independently in 2D images, the context
information among multiview images can be exploited.
Finally, according to the nature of deep learning, if more
training data are collected, the segmentation performance is
expected to be further improved.

In our experiment, there is only one measurement target in
each image. In the future, we will try to segment and analyse
multiple scars at the same time when there are multiple scars
in the same body part, which can improve the measurement
efficiency. In addition, our method can be generalized to
measure various types of scars and to obtain more quantitative
indices such as scar area, which are harder to measure man-
ually. The application prospect of our method is very broad.
A smart phone-based scar measurement application can be
further developed based on the proposed framework, and it
has the potential to be applied to telemedicine. The method
can also be extended to skin wound measurement and can
be used in clinical medicine for recording and tracking the
wound-healing process.

Conclusion

Measurement and analysis of scars are important in forensic
and clinical medicine. In this article, we proposed a deep
learning-based automatic tool for measuring the length of
linear scars. An average error of 3.69% in scar length mea-
surement was achieved on clinically obtained test data. This
study demonstrates that the application of photogrammetry
in scar measurement is effective. The proposed method is
promising in providing convenient, objective, accurate, and
low-cost measurement of linear scars and can help save the
workloads of forensic clinicians. It lays the foundation for
further research of measurement for different degrees and
types of scars.
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